Cómo factorizar un número: 11 pasos (con imágenes)

Tabla de contenido:

Cómo factorizar un número: 11 pasos (con imágenes)
Cómo factorizar un número: 11 pasos (con imágenes)

Video: Cómo factorizar un número: 11 pasos (con imágenes)

Video: Cómo factorizar un número: 11 pasos (con imágenes)
Video: TENIS DE MESA 4. Cómo jugar al ping pong 2024, Noviembre
Anonim

Los factores de un número son números que se pueden multiplicar para obtener ese número. Otra forma de verlo es que cada número es el producto de múltiples factores. Aprender a factorizar, es decir, dividir un número en los factores que lo componen, es una habilidad matemática que se usa no solo en aritmética básica sino también en álgebra, cálculo y otros. ¡Vea el Paso 1 a continuación para comenzar a aprender a factorizar!

Paso

Método 1 de 2: Factorizar números enteros básicos

Factorizar un número Paso 1
Factorizar un número Paso 1

Paso 1. Anote su número

Para comenzar a factorizar, todo lo que necesita son números; cualquier número no importa, pero, en este caso, usemos enteros simples. Un número entero es un número que no es una fracción ni un decimal (todos los números enteros positivos y negativos son enteros).

  • Supongamos que elegimos el número

    Paso 12.. Escriba este número en una hoja de papel.

Factorizar un número Paso 2
Factorizar un número Paso 2

Paso 2. Encuentra los dos números que, cuando se multiplican, dan como resultado tu primer número

Cualquier número entero puede escribirse como el producto de otros dos números enteros. Incluso los números primos se pueden escribir como resultado de multiplicar 1 por el número mismo. Pensar en un número como el producto de dos factores requiere pensar hacia atrás; tienes que preguntarte, ¿qué multiplicación produce este número?

  • En nuestro ejemplo, 12 tiene muchos factores: 12 × 1, 6 × 2 y 3 × 4 igual a 12. Por lo tanto, podemos decir que los factores de 12 son 1, 2, 3, 4, 6 y 12. Para ello, usemos los factores 6 y 2.
  • Los números pares son muy fáciles de factorizar porque cada entero tiene un factor de 2. 4 = 2 × 2, 26 = 13 × 2, y así sucesivamente.
Factorizar un número Paso 3
Factorizar un número Paso 3

Paso 3. Determine si su factor aún puede factorizarse

Muchos números, especialmente los números grandes, aún se pueden factorizar varias veces. Cuando encuentre dos factores de un número, si uno tiene un factor, puede factorizar este número de acuerdo con el factor. Dependiendo de la situación, puede resultar ventajoso o desventajoso hacerlo.

Por ejemplo, en nuestro ejemplo, hemos factorizado 12 en 2 × 6. Observe que 6 tiene su propio factor - 3 × 2 = 6. Entonces, podemos decir que 12 = 2 × (3 × 2).

Factorizar un número Paso 4
Factorizar un número Paso 4

Paso 4. Deje de factorizar si encuentra un número primo

Un número primo es un número que solo se puede dividir entre sí mismo y 1. Por ejemplo, 1, 2, 3, 5, 7, 11, 13 y 17 son números primos. Si factorizas un número y el resultado es un número primo, continuar factorizando no tiene sentido. No tiene sentido factorizarlo en sí mismo multiplicado por uno, así que deténgalo.

En nuestro ejemplo, factorizamos 12 en 2 × (2 × 3). 2, 2 y 3 son números primos. Si lo factorizamos de nuevo, tendremos que factorizarlo en (2 × 1) × ((2 × 1) (3 × 1)), lo cual es inútil, por lo que es mejor evitarlo

Factorizar un número Paso 5
Factorizar un número Paso 5

Paso 5. Factoriza los números negativos de la misma manera

Los números negativos se pueden factorizar de la misma manera que los números positivos. La diferencia es que los factores deben producir el número cuando se multiplican, por lo que si alguno de los factores el número debe ser negativo.

  • Por ejemplo, factoricemos -60. Vea lo siguiente:

    • -60 = -10 × 6
    • -60 = (-5 × 2) × 6
    • -60 = (-5 × 2) × (3 × 2)
    • -60 = - 5 × 2 × 3 × 2. Tenga en cuenta que el producto de un número negativo y varios números impares de números negativos tendrá el mismo resultado. Por ejemplo, - 5 × 2 × -3 × -2 también es igual a 60.

Método 2 de 2: estrategia para factorizar números grandes

Factorizar un número Paso 6
Factorizar un número Paso 6

Paso 1. Escriba sus números arriba en una tabla de 2 columnas

Si bien generalmente es fácil factorizar números enteros pequeños, factorizar números enteros grandes puede resultar confuso. A la mayoría de nosotros nos resultará frustrante resolver un número de 4 o 5 dígitos como primo usando matemáticas. Afortunadamente, el uso de tablas facilita mucho este proceso. Escriba sus números arriba en una tabla en forma de T con 2 columnas; usará esta tabla para registrar su factorización.

Para este ejemplo, elijamos un número de 4 dígitos para factorizar - 6.552.

Factorizar un número Paso 7
Factorizar un número Paso 7

Paso 2. Divida su número por el factor primo más pequeño posible

Divida su número por el factor primo más pequeño (que no sea 1) para que no tenga resto. Escribe los factores primos en la columna de la izquierda y escribe tu respuesta de división en la columna de la derecha. Como se señaló anteriormente, los números pares son muy fáciles de factorizar porque su factor primo más pequeño es siempre 2. Sin embargo, los números impares tienen diferentes factores primos más pequeños.

  • En nuestro ejemplo, dado que 6.552 es un número par, sabemos que el factor primo más pequeño es 2. 6.552 2 = 3.276. En la columna de la izquierda, escribimos

    Paso 2. y en la columna de la derecha, escribe 3.276.

Factorizar un número Paso 8
Factorizar un número Paso 8

Paso 3. Continúe factorizando números de esta manera

Luego, factoriza el número en la columna de la derecha por su factor primo más pequeño, no el número en la parte superior de la tabla. Escribe el factor primo en la columna de la izquierda y el nuevo número en la columna de la derecha. Siga repitiendo este proceso: con cada iteración, el número en la columna de la derecha disminuirá.

  • Continúe nuestro proceso. 3.276 2 = 1.638, entonces en la parte inferior de la columna de la izquierda, escribiremos el número

    Paso 2. de nuevo, y debajo de la columna de la derecha, escribiremos 1.638. 1,638 2 = 819, entonces escribiremos

    Paso 2. y 819 debajo de la columna anterior.

Factorizar un número Paso 9
Factorizar un número Paso 9

Paso 4. Factoriza los números impares probando pequeños factores primos

Es más difícil encontrar el factor primo más pequeño de un número impar que un número par porque el factor primo más pequeño no es 2. Si encuentra un número impar, intente dividir por un número primo pequeño que no sea 2 - 3, 5, 7, 11, y así sucesivamente, hasta que encuentre el factor que pueda dividirlo sin resto. Este es el factor primo más pequeño del número.

  • En nuestro ejemplo, encontramos 819. 819 es un número impar, por lo que 2 no es un factor de 819. En lugar de escribir el número 2, probamos el siguiente número primo que es 3. 819 3 = 273 y no hay resto, entonces escribimos

    Paso 3. y 273.

  • Al adivinar factores, debe probar todos los números primos hasta la raíz cuadrada del factor más grande encontrado. Si no puede encontrar un factor que divida un número sin resto, probablemente sea un número primo y detenga el proceso de factorización.
Factorizar un número Paso 10
Factorizar un número Paso 10

Paso 5. Continúe hasta encontrar el número 1

Continúe dividiendo los números en la columna de la derecha usando su factor primo más pequeño hasta que encuentre los números primos en la columna de la derecha. Divida este número por sí mismo, de modo que el número de la columna de la derecha permanezca y el 1 de la columna de la derecha.

  • Completa la factorización de nuestro número. Consulte lo siguiente para obtener un desglose detallado:

    • Dividir por 3 de nuevo: 273 3 = 91, sin resto, así que escribimos

      Paso 3. y 91.

    • Probemos de nuevo con el número 3: 3 no es un factor de 91, y el siguiente primo (5) tampoco es un factor, sino 91 7 = 13, sin resto, así que escribimos

      Paso 7. da

      Paso 13..

    • Probemos de nuevo con el número 7: 7 no es un factor de 13, y el siguiente número primo (11) tampoco es un factor, pero es divisible por sí mismo: 13 13 = 1. Entonces, para completar nuestra tabla, escribimos

      Paso 13. da

      Paso 1.. Factorización completa.

Factorizar un número Paso 11
Factorizar un número Paso 11

Paso 6. Utilice los números de la columna de la izquierda como factores para sus números

Si ha encontrado 1 en la columna de la derecha, la factorización está completa. Los números de la columna de la izquierda son los factores. En otras palabras, si multiplica todos estos números, obtendrá el número que está en la parte superior de la tabla. Si el mismo factor ocurre varias veces, puede usar el signo cuadrado para ahorrar espacio. Por ejemplo, si hay 4 factores de 2, puede escribir 24 versus escribir 2 × 2 × 2 × 2.

En nuestro ejemplo, 6.552 = 23 × 32 × 7 × 13. Esta es una factorización completa de 6.552 en factores primos. El orden de estos números no tendrá ningún efecto; el producto seguirá siendo 6.552.

Consejos

  • Otra cosa importante es el concepto de números. principal: un número que tiene solo dos factores, 1 y él mismo. 3 es un número primo porque sus factores son solo 1 y 3. Sin embargo, 4 tiene un factor de 2. Los números que no son primos se llaman compuestos. (Sin embargo, el número 1 no es ni primo ni compuesto, es especial).
  • Los números primos más bajos son 2, 3, 5, 7, 11, 13, 17, 19 y 23.
  • Entiende que un número es factor otro número, de modo que el número más grande se pueda dividir por el número más pequeño sin dejar resto. Por ejemplo, 6 es un factor de 24 porque 24 6 = 4 y no hay resto. Sin embargo, 6 no es un factor de 25.
  • Tenga en cuenta que solo estamos hablando de números naturales, que a veces se denominan números de conteo: 1, 2, 3, 4, 5… No estaremos factorizando números negativos o fracciones, ya que no son apropiados para este artículo.
  • Algunos números se pueden factorizar de una manera más rápida, pero funciona todo el tiempo, como beneficio adicional, los factores primos se ordenan de menor a mayor cuando haya terminado.
  • Si los números se suman y son múltiplos de tres, entonces uno de los factores del número es tres. (819 = 8 + 1 + 9 = 18, 1 + 8 = 9. Tres es un factor de 9, por lo que es un factor de 819).

Recomendado: